
Offline Software Updates

Mark Messier
Indiana University
MIPP@FNAL
10 May 2003

Event Data Model and I/O
Basically all in place. Still tweaking.

Access to event like this:

EDMEventHandle evt; // Access via handle. Allows partial event I/O
EDMEventHeader& head = evt.Header(); // Header on its own branch
EDMDataBucket& detsim = evt.DetSim(); // Hits, tracks
EDMDataBucket& mc = evt.MC(); // MC vertex data (to-do)
EDMDataBucket& data = evt.Data(); // Event data from DAQ
MIPPEventSummary& summary = evt.Summary(); // DST-style summary info.

Getting data out of buckets:

std::vector<const TPCDigit*> tpcd;
evt.Data().Get("/tpc/TPCDigit", tpcd);

Putting data into buckets: Still tweaking...
Old:
 TPCDigit* tpcd;
 evt.Data().Adopt(tpcd,"/tpc");

New:
 TPCDigit tpcd;
 evt.Data().Put(tpcd,"/tpc");

Doesn't look like much of a difference.
But 2nd way uses "new with placement"
much faster on read in. Amount of memory
allocations reduced

Utilities
Sample event loop (Util/event_loop.cc).
Shows how to run an analysis job:

IoModule iomod;
 for (int i=1; i<argc; ++i) iomod.AddFile(argv[i]);

 // Loop over all files/events loaded into the I/O module
 int nev = 0; // Number of events processed
 int ntick = 10; // How often to print ticker?
 for (; iomod.ReadOK(); iomod.Advance()) {
 EDMEventHandle& evt = iomod.GetEvent();

 // Call your analysis here. For example:
 // MyAna.ProcEvent(evt);

 // Print ticker...
 if (++nev%ntick==0) {
 std::cerr << "[* " << nev << " events complete *]" << std::endl;
 }
 }

Data dump (Util/edm_dump.cc)
Shows what data is where in an event:

enrico1% edm_dump e907mc/e907mc.root
Dump of run = 1 event = 1 file = e907mc/e907mc.root
evt.Header()
|================================
evt.DetSim()
* hits
|-* MCCTPCHit[1937]
|-* MCCCKOVHit[796]
|-* MCCTOFHit[52]
|-* MCCDCHit[338]
|-* MCCRICHHit[7202]
|-* MCCRICHHit2[45]
|================================
evt.MC()
* kine
|-* MCCParticle[17]
|================================
evt.Data()
* tpc
|-* TPCDigit[24934]
* tof
|-* TOFDigit[34]
* rich
|================================
evt.Summary()
|================================

Digitization
TPC (Lebedev)
 Basically working. Needs:
- Noise
- Drift with B field
- Digits to Hits connection

RICH (Seun)
Basically working. FORTRAN adapted from SELEX. Wrapped in C++. Needs:
- Connection Digits to Hits connection
- Data on PMT efficiency, noise, etc.

TOF (Bergfeld)
Done! Needs:
- "Real" parameters from final design and testing
- Has Digits to Hits connection. Could be model for other packages

CKOV (Lange) - ??

Drift Chambers / NCAL / HCAL (??)
Needs volunteer. Good introduction to MIPP software and C++!

Monte Carlo Access

MCClasses Package:
MCCParticle - single particle off GEANT kine stack. Contains particle ID,
 vertex, mometum at vertex
Note: Particle ID by PDG code. Unclear what to do for ions. Is there a standard?

MCCHits base class for all detector hits contains:
 x,y,z and track ID. All hits can be mapped to tracks
 MCCTPCHits, MCCRICHHits, MCCTOFHits, etc. all derive from this

MCTruth Package:
MCTruth - Unpacks hits and particles and builds associations between them.
Defines an MCTrack which is an MCCParticle and list of z-sorted hits. May also
contain an MCRICHRing. Roughly contains results of a "perfect" reconstruction
of the event

ToDo: Not perfect... seems GEANT kine stack is either incomplete or I'm not
navigating it correctly. Secondary hadronic interactions and decays confuse MCTruth.

MCTruth: Example of use:

EDMEventHandle& evt;
MCTruth m(evt);
int ntrack = m.Ntrack();
for (int i=0; i<ntrack; ++i) {
 double ptot, pt;
 const MCTrack& t = m.Track(i);
 pt = sqrt(t.Particle().PVERT_X()*t.Particle().PVERT_X()+
 t.Particle().PVERT_Y()*t.Particle().PVERT_Y());
 ptot = sqrt(t.Particle().PVERT_X()*t.Particle().PVERT_X()+
 t.Particle().PVERT_Y()*t.Particle().PVERT_Y()+
 t.Particle().PVERT_Z()*t.Particle().PVERT_Z());
 fprintf(stderr,
 "TRK: %2d vtx=[%6.3f,%6.3f,%6.3f] p=%6.2f pt=%6.2f nhit=%3d\n",
 t.Particle().IPART_G3(),
 t.Particle().VERT_X(),
 t.Particle().VERT_Y(),
 t.Particle().VERT_Z(),
 ptot, pt, t.Nhit());
 for (int j=0; j<m.Track(i).Nhit(); ++j) {
 fprintf(stderr," [%6.2f, %6.2f, %6.2f]\n",
 t.Hit(j).X(),t.Hit(j).Y(),t.Hit(j).Z());
 }
}

Geometry
Right place to put constants about the size and placement of detectors and channel-to-position
position-to-channel conversions

Currently uses ROOT TGeo classes. These have/are evolving rapidly.
Ours is already out of date (doesn't work with newest ROOT).

Right now geometry is set from script generated by g2root utility from
E907 GEANT3 Monte Carlo. Not ideal. But how to change??

A couple of options:

Add geometry to root file. New file, new geometry...
Pros: Easy to automate in case of MC,
 Fast, "local", loading of geometry
Cons: Hard to fix after the fact...

Get geometry from Database:
Pros: More complicated to connect to MC
 Easy to correct after the fact
Cons: Overhead of loading DB tables, not local

Short term: Need to update geometry for new TOF geometry in MC
This will "freeze out" older versions of ROOT (pre version 3.

Reconstruction Chain
I. TPC Track finding (Lebedev) - in good shape
II. TPC Track fitting (Lebedev, and/or volunteer?)
 Not started. Required B field maps of JGG.
III. TPC+Drift chamber fitting
 Not started. Requires TPC track seeds
IV. TOF m^2 measurement
V. CKOV analysis
VI. RICH ring fits
 ~Done. Uses MCTruth tracks. Needs connections to "real" tracks
VII. ECAL/NCAL analysis
VIII. Final particle ID decisions
IX. DST event summary

Expect Bfield access from H. Meyer soon. Should
be able to continue with TPC fits. Volunteer?

Also to do: Reconstruction base classes could use more thought and work

Event Display ToDo List
- Add TOF digits
- Allow adjustments to display ranges (time, x, y, z, stick, pad ...)
- Highlight selected digits (requires connection maps)
- Adjustments to make work in online environment

Online/Offline Interface

Need to start working on data handling at online/offline boundary

Local disk

DAQ

Reconstruction and
 EventDisplay

Detector monitoring

Enstore

Copy process

every 1 in n events...

Online format to
 offline format

~every event

Needs:
- Tools for histogram selection,
 layout, plugins
- Statistical analysis
- Alarms/Logging

~None of this is implemented...Needed at start
 of run. Will get my attention next...

Release Policy
- No production going on so not much point in making a big deal
 about releases yet
- But...it is useful to have tagged stable versions of the code to
 allow analysis and code development to happen at a site in parallel
- So for now "releases" are made at the start of each month. So far we
 have two releases R03.04.01, R03.05.02.
- Release number by date
- Completely automatic "make-release" script
- Anyone can make a release. If you've got big changes coming
 might make sense to make a release
- The script tags all packages whether they have changed or not...
- Tests if packages build but not if they work.
- Don't get too wedded to any release! Software changes fairly rapidly
- For production this can carry over. Will need to tag external packages
 and test code

Summary
- Much has been done, much to do...

ToDo list:
Framework
- Configuration parameters + Database (Lange)
Simulation
- CKOV digits, DC digits, HCAL, NCAL
- TPC B field drift study
- Tuning...
Reconstruction
- B field access (Meyer)
- TPC Track fitting (Lebedev + ...)
- TPC + DC tracking
- Particle ID + over all PID
Online/Offline
- Enstore connections
- Data serving in online and offline formats
- online/offline conversion (Lebedev)
- detector monitoring

